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Abstract

This paper reports the evaluation of an expert sys-
tem whose output is a three-dimensional geomet-
ric solid. Evaluating such an output emphasizes
the problems of establishing a comparison stan-
dard, and of identifying and classifying deviations
from that standard. Our evaluation design used
a panel of physicians for the first task and a sep-
arate panel of expert judges for the second. We
found that multi-parameter or multi-dimensional
expert system outputs, such as this one, may result
in lower overall performance scores and -increased
variation in acceptability to different physicians.
We surmise that these effects are a consequence of
the higher number of factors which may be deemed
unacceptable. The effects appear, however, to be
equal for computer and human output. This eval-
uation design is thus applicable to other expert sys-
tems producing similarly complex output.

PROBLEM DEFINITION

Most medical expert systems produce discrete
symbolic output, such as a diagnosis or a specific
therapeutic recommendation. Such outputs are
easily interpreted, and in evaluation of the system,
determination of their correctness is straightfor-
ward. Typically, comparison of the output to an
objective standard, such as a pathologic finding or
textbook definition, results in a direct assessment
of agreement or disagreement. Where no such gold
standard exists, a practical substitute is made by
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comparing the expert system output to that of
several human experts.

In contrast, the expert system described in this
article produces as its output a Planning Target
Volume (PTV), an irregular geometric solid used
in radiation therapy treatment planning.' Since
this volume is represented as a collection of poly-
gon vertices, the evaluation of its correctness, even
by comparison to a gold standard, is non-trivial.
The vertices, centroids, and calculated volumes of
an acceptable PTV and the gold standard would
be unlikely to exactly agree. Furthermore, approx-
imate numeric agreement of these parameters does
not necessarily indicate clinical validity, nor do
other common measures such as degree of overlap.
For example, contours showing 99% agreement by
some mathematical measure might differ strongly
in clincal acceptability if the 1% difference caused
one contour to overlap the spinal cord or some
other radiaiton-sensitive structure. To circumvent
these difficulties, we used expert evaluators to de-
termine acceptability of PTVs. This obviated the
need for a mathematical comparison methodology.

It is expected that, with the proliferation of ex-
pert systems, outputs of this complex and multidi-
mensional nature will become more common. Our
results emphasize the importance of careful eval-
uation design, as these outputs can significantly
affect performance scores. Furthermore, we ob-
served the utility of such evaluations for pointing
out errors prevalent in clinical practice.

THE PTV TOOL

As part of the advance toward true three dimen-
sional radiation therapy treatments, the Interna-
tional Commission on Radiation Units recently
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defined an entity known as the planning target
volume (PTV).1 While a physician should ide-
ally be able to outline a tumor volume on a pa-
tient's treatment planning CT scan and then ir-
radiate only that volume, certain realistic con-
straints make this impossible. During a radiation
treament, the tumor may move relative to its loca-
tion on the CT scan due to physiologic causes such
as respiration or gastrointestinal peristalsis. Addi-
tionally, since treatments are given daily over a pe-
riod of weeks, further error is introduced from vari-
ations in daily treatment set-up. Consequently, in
order to ensure treating the entire tumor volume
to full dose, an expansion of the tumor volume is
defined which takes into account these intra- and
inter-treatment uncertainties. This larger volume,
illustrated by the dashed line in Figure 1, is the
planning target volume.
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Figure 1: Tumor volume in the x,y (CT) plane
showing adequate surrounding PTV.

The Planning Target Volume Tool (PTVT) gen-
erates a PTV using a knowledge base, inference
engine, and volume expansion algorithm. It re-
lies on the provided tumor volume as a basis for
expansion, and uses information about the tumor
location, histology, stage, and patient immobiliza-
tion to derive the parameters of the expansion.
Currently, the knowledge base covers nasopharyn-
geal carcinoma and non-small cell lung cancers.

EVALUATION METHODOLOGY
Typically, expert system evaluation involves direct
comparison of the computer output with that of
human experts. However, when the output is a
geometric solid, as in this case, comparison proves
problematic. While quantitative and qualitative
statements may be made about the differences be-
tween the output solids, one must still define which
of these differences are crucial, and for those that
are, where the bounds of acceptability lie. Results
of the evaluation process will depend heavily upon

who makes these definitions and how they are ap-
plied.

In order to deal with these issues, our exper-
imental design for tool evaluation relies on two
separate groups of physician experts. One group,
designated generators, produces reference PTVs
for comparison with the PTVT output. The sec-
ond group, designated evaluators, serves to estab-
lish criteria for judging the PTVs and to perform
the judging process according to their criteria.
The evaluation methodology is a modification

of the Turing test, similar to that described by
Wyatt and Spiegelhalter,2 in which a panel of
experts evaluated the output of a computer sys-
tem against a gold standard. For our evaluation,
the comparison standard was the output of the
physician generators. The PTVs were not iden-
tified by source, so the evaluators were unaware
at any time whether they were judging the out-
put of a human or a computer. Thus, if their
scoring showed no significant difference between
human and computer-generated PTVs, the PTV
Tool could be said to have passed a version of the
Turing test.

Notably, this approach circumvents the prob-
lem of identifying a gold standard by generating
its own internal standard in the evaluation crite-
ria used by the physician evaluators. It avoids the
problem of defining a clinically meaningful com-
parison algorithm for irregular geometric solids by
using the evaluators to do the comparison, then
statistically testing their scoring of the PTVs.
Because the PTVT is expected to fall within the

range of variation of the human generators, the
null hypothesis states that the human and com-
puter generators performed equally well. The al-
ternate hypothesis states that significant perfor-
mance differences exist.

EVALUATION PROCESS
All participating physicians were experienced in
three-dimensional treatment planning and were
selected from three different institutions. The four
physician generators were presented with the test
patient data shown in Table 1. This was accom-
panied by a normal CT scan with a simulated
tumor volume drawn on the appropriate slices.
(Pathologic CT scans were not used, as early trials
showed disagreement to arise over the accuracy of
the drawn tumor volumes. Such disagreement was
thought to affect the resulting PTV.) Using this
information, they then generated planning target
volumes. The PTVT generated planning target
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volumes for comparison, using the same data pro-
vided to the physician generators.

Table 1: Test Patient Data: Cases are labeled NP
for nasopharyngeal, L for lung, SqCa is squamous
cell carcinoma, and all the lung cases are adeno-
carcinomas.

Label Description Stage Immob.
device

Li R hilar T4N2 none
L2 L hilar T4N2 none
L3 L upper lobe T2N0 none
L4 L upper lobe T3NO0 none
L9 R lower lobe T2N2 none
NP1 SqCa T4NO mask
NPla SqCa T4NO none
NP3 SqCa T2NO mask
NP4 SqCa T4N2 mask

awith chest wall fixation

In order to establish a sense of the process, the
three evaluators also drew PTVs independently for
two of the test cases. They compared and dis-
cussed their results, using this as a basis for estab-
lishing judging criteria. They were then provided
with the output of the generators, both human
and computer.
Each evaluator, using their mutual criteria, in-

dependently designated each PTV as acceptable
or unacceptable. When a PTV was deemed un-

acceptable, the evaluator was required to state a

reason.

The evaluation produced 135 data points, repre-
senting the scoring (acceptable vs. unacceptable)
given by each evaluator for the five PTVs (four
human and one computer) generated on each of
the nine patients. Logistic regression analysis was

used to determine the effects of patient, PTV gen-

erator, and evaluator on the score. This method
models the logarithm of the odds as a linear func-
tion of the independent variables,

log( P ) = bo + b1 -pred1 + b2 pred2 +-... (1)
-p

where p is the probability of any particular PTV
being scored as acceptable and the predi are the
independent predictor variables to be tested for
effect on this probability.
The coefficients, bo ... bn, can be tested for sig-

nificance using the score test, which has a x2 dis-
tribution. Coefficients which reach significance
imply that the associated predictor variable (gen-
erator, evaluator or patient) exerts a statistically

significant effect on the measured variable (pass
rate).
An additional qualitative analysis was done on

the reasons given for rejecting a PTV. By classify-
ing these reasons into categories, it was possible to
determine if the nature of the errors made by the
PTVT was different from those made by human
generators.

RESULTS

The pass rates as a function of patient, genera-
tor, and evaluator are listed in Table 2. Logistic
regression analysis showed the PTV pass rate to
have a strong dependence upon both evaluator and
patient (p < 0.05).

Table 2: Human/Computer Pass Rate (%) by Pa-
tient and Evaluator. The columns show separately
human (H) and computer (C) generated data. The
average at the bottom is the weighted combination
of human and computer generated data. The la-
bels correspond to Table 1.

The first finding is clearly evident from a pe-

rusal of Table 2. The pass rate for PTVs reviewed
by Evaluator 2 was less than 9%, while the other
two evaluators produced pass rates of 40% and
60%. The statistical analysis does not, of course,

give the cause of this finding, but the qualitative
analysis does suggest some factors.
The second finding, that of a significant effect

from the different patients, is also apparent in Ta-
ble 2, as the pass rate for the different patients
varies quite widely. Possibly, PTVs were easier to
generate and/or judge for some clinical cases.

A patient/evaluator interaction variable was in-
cluded in the analysis and was also found to exert
a significant effect on the pass rate (p < 0.05). The
interaction effect would be insignificant only if the
rank ordering of each evaluator's scores was rela-
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Eval 1 Eval 2 Eval 3 All Evals
Label H C H C H C H C
Li 75 100 0 0 75 100 50 67
L2 75 100 0 0 75 100 50 67
L3 25 0 0 0 75 100 33 33
L4 0 0 50 0 75 0 42 0
L9 100 0 50 0 75 0 58 0
NP1 50 0 0 0 25 100 25 33
NPla 0 0 0 0 50 0 17 0
NP3 50 100 0 0 25 100 25 67
NP4 0 0 0 0 50 100 17 33
Tot. 42 33 11 0 58 67 36 33
Avg. 40 9 60 35



tively consistent in relation to those of the other
evaluators across all patients. This was clearly not
the case.

With the patient and evaluator variables and
interaction accounted for, there was no signifi-
cant dependence of pass rate upon generator (p =
0.63). Therefore, the null hypothesis could not be
rejected, i.e., the expert system performance was
equally successful to that of human experts.

A qualitative review of the evaluators' reasons
for failing PTVs showed them to be classifiable
into three categories. PTVs were most frequently
rejected for providing too narrow a margin around
the tumor volume. A second group was rejected
for encroaching upon a critical, radiation sensitive
structure. Finally, a few were faulted for overly
generous margins. Table 3 lists the frequency of
these reasons for the human and computer genera-
tors. Evidently, the different generator errors were
qualitatively as well as quantitatively similar.

Table 3: Distribution of Reasons for PTV Rejec-
tion by Generator

Reason Human Computer
(n=78) (n=21)

Margin too narrow 69% 62%
Margin too wide 4% 10%
Critical structure 27% 29%

When the qualitative results were analyzed for
the different evaluators, a reason for the differ-
ences between evaluators begins to become appar-
ent (Table 4).

Table 4: Distribution of Reasons for PTV Rejec-
tion by Evaluator

nReason

Margin too narrow
Margin too wide
Critical structure

t Eval 1 Eval 2 Eval 3
(n=31) (n=47 (n=21)

54% 87% 62%
4% 14%

46% 9% 44%

Evaluators 1 and 3 had a similar distribution of
reasons for rejecting a PTV. Evaluator 2 differed
from the other two markedly. A closer inspection
of this evaluator's responses revealed that he car-
ried out an analysis of margins in the Z direction,
orthogonal to the CT image plane. Neither of the
other evaluators took this step.

DISCUSSION
The results show that the PTV Tool is as success-
ful as human experts in generating a PTV. How-
ever, the marked differences in scoring between the
different evaluators, and the overall low success
rate of the generators, whether human or com-
puter, demonstrate the difficulty of evaluating this
system. The results can be seen to relate the high
degree of variability in the rating process with the
complexity of the output.
One obvious contributor to these discrepancies

is the Z-dimension analysis carried out by Eval-
uator 2. This analysis was appropriate under
the evaluators' mutual judging criteria, but ap-
parently it was not addressed separately in their
initial discussion, nor did it occur to the other two
evaluators. As a consequence of this evaluation,
it became clear that the expansion algorithm used
in the PTV Tool fails to adequately consider this
dimension. (See Figure 2.) However, it also be-
came apparent that the physician generators did
not consider this dimension at all. This is an ex-
ample of an expert system reproducing the errors
prevalent in clincal practice. The difficulty of man-
ually producing an accurate three-dimensional ex-
pansion from a tomographic image set emphasizes,
in itself, the need for an automated tool.

Lateral margin adequate,
vertical margin too narrow

Figure 2: Tumor volume in the x,z plane, of identi-
cal shape to Figure 1, showing incorrect expansion
discovered at evaluation. CT slice planes are seen
on edge in this view.

The failure to consider Z-dimension expansion
does not fully explain the results, however. Evalu-
ators 1 and 3 did not consider this factor, yet both
delivered relatively low pass rates (40% and 60%)
which differ significantly.
These results are, at least in part, attributable

to the unusual output of produced by this expert
system. In contrast to single-valued expert system
output, a geometric solid is inherently multidimen-
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sional. Each dimension presents a separate param-
eter to be considered by the evaluators, who may
include additional parameters, as in this study, the
relation of the PTV to radiation sensitive critical
structures.

The lower scores and decreased evaluator con-
sensus observed in this case likely stem from the
large number of parameters upon which the out-
put is judged. When a deviation in any parameter
prompts the evaluator to fail the output under re-
view, lower overall scores will be observed as the
number of parameters increases, since there are
more opportunities for deviation. Furthermore,
if differences of opinion or practice exist between
evaluators, these will also be exaggerated, as there
are more factors over which a difference may be
observed.

Expert system output need not be geometric to
be multiparametric. In systems producing differ-
ential diagnoses as output, inclusion of the rea-
sonable diagnoses in the list and rank ordering of
the list represent separate parameters to be con-
sidered in evaluation. Frequently, the evaluation
of such systems is simplified by creating a heuris-
tic which combines all parameters into a single
score.3' 4However, when evaluators are presented
with the parameters individually, significant varia-
tion between evaluators may occur. For example,
in their report on the evaluation of ANEMIA, a
hematologic expert system, Quaglini, et. al.5 re-
ported less than 50% consensus among their eval-
uators.

Just as decrease of evaluator consensus has been
observed, scorings lower than one might expect
have been reported for systems with complex or
multidimensional output. Hickam, et. al.6 report
on the evaluation of ONCOCIN, an expert sys-
tem designed to recommend treatment for lym-
phoma patients. Oncologic treatment plans have
several variable parameters including treatment
type, timing, and dosage, and thus represent a
multidimensional output. The ONCOCIN eval-
uators judged the treatment recommendations of
the expert system along with those of the patients'
physicians. In cases where these recommendations
differed, only 67% of treatment recommendations
were judged acceptable, regardless of whether they
originated with the human experts or the com-
puter system.
As expert systems continue to advance and pro-

liferate, it is likely that the tasks required of them
will increase in complexity such that the num-
ber of parameters upon which the outputs will be

judged increases. Because of this, evaluations find-
ing lower average scores and significant variabil-
ity between judges will likely become more com-
mon. Consequently, evaluation designs such as the
one reported here will be vital to establishing the
acceptability of expert system output within the
spectrum of clinical practice.
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